Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
1.
Cell Death Dis ; 15(4): 248, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575587

RESUMO

Gastric cancer (GC) contains subpopulations of cancer stem cells (CSCs), which are described as the main contributors in tumor initiation and metastasis. It is necessary to clarify the molecular mechanism underlying CSCs phenotype and develop novel biomarkers and therapeutic targets for gastric cancer. Here, we show that POLQ positively regulates stem cell-like characteristics of gastric cancer cells, knockdown of POLQ suppressed the stemness of GC cells in vitro and in vivo. Further mechanistic studies revealed that POLQ knockdown could downregulate the expression of dihydroorotate dehydrogenase (DHODH). DHODH overexpression rescued the reduced stemness resulted by POLQ knockdown. Furthermore, we found that POLQ expression correlated with resistance to ferroptosis, and POLQ inhibition renders gastric cancer cells more vulnerable to ferroptosis. Further investigation revealed that POLQ regulated DHODH expression via the transcription factors E2F4, thereby regulating ferroptosis resistance and stemness of gastric cancer cells. Given the importance of POLQ in stemness and ferroptosis resistance of GC, we further evaluated the therapeutic potential of POLQ inhibitor novobiocin, the results show that novobiocin attenuates the stemness of GC cells and increased ferroptosis sensitivity. Moreover, the combination of POLQ inhibitor and ferroptosis inducer synergistically suppressed MGC-803 xenograft tumor growth and diminished metastasis. Our results identify a POLQ-mediated stemness and ferroptosis defense mechanism and provide a new therapeutic strategy for gastric cancer.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Regulação para Baixo/genética , Ferroptose/genética , Novobiocina , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
2.
ACS Nano ; 18(11): 7945-7958, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452275

RESUMO

Ferroptosis is a form of regulated cell death accompanied by lipid reactive oxygen species (ROS) accumulation in an iron-dependent manner. However, the efficiency of tumorous ferroptosis was seriously restricted by intracellular ferroptosis defense systems, the glutathione peroxidase 4 (GPX4) system, and the ubiquinol (CoQH2) system. Inspired by the crucial role of mitochondria in the ferroptosis process, we reported a prodrug nanoassembly capable of unleashing potent mitochondrial lipid peroxidation and ferroptotic cell death. Dihydroorotate dehydrogenase (DHODH) inhibitor (QA) was combined with triphenylphosphonium moiety through a disulfide-containing linker to engineer well-defined nanoassemblies (QSSP) within a single-molecular framework. After being trapped in cancer cells, the acidic condition provoked the structural disassembly of QSSP to liberate free prodrug molecules. The mitochondrial membrane-potential-driven accumulation of the lipophilic cation prodrug was delivered explicitly into the mitochondria. Afterward, the thiol-disulfide exchange would occur accompanied by downregulation of reduced glutathione levels, thus resulting in mitochondria-localized GPX4 inactivation for ferroptosis. Simultaneously, the released QA from the hydrolysis reaction of the adjacent ester bond could further devastate mitochondrial defense and evoke robust ferroptosis via the DHODH-CoQH2 system. This subcellular targeted nanoassembly provides a reference for designing ferroptosis-based strategy for efficient cancer therapy through interfering antiferroptosis systems.


Assuntos
Ferroptose , Compostos Organofosforados , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Di-Hidro-Orotato Desidrogenase , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Dissulfetos/metabolismo
3.
Bioorg Chem ; 146: 107249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493638

RESUMO

One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Antimaláricos/química , Plasmodium falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Pirróis/farmacologia , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
4.
Pharmacol Res ; 202: 107115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423231

RESUMO

Dihydroorotate dehydrogenase (DHODH)-mediated ferroptosis defense is a targetable vulnerability in cancer. Currently, only a few DHODH inhibitors have been utilized in clinical practice. To further enhance DHODH targeting, we introduced the mitochondrial targeting group triphenylphosphine (TPP) to brequinar (BRQ), a robust DHODH inhibitor, resulting in the creation of active molecule B2. This compound exhibits heightened anticancer activity, effectively inhibiting proliferation in various cancer cells, and restraining tumor growth in melanoma xenografts in mice. B2 achieves these effects by targeting DHODH, triggering the formation of reactive oxygen species (ROS), promoting mitochondrial lipid peroxidation, and inducing ferroptosis in B16F10 and A375 cells. Surprisingly, B2 significantly downregulates PD-L1 and alleviates immune suppression. Importantly, B2 exhibits no apparent adverse effects in mice. Collectively, these findings highlight that enhancing the mitochondrial targeting capability of the DHODH inhibitor is a promising therapeutic approach for melanoma treatment.


Assuntos
Ferroptose , Melanoma , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Animais , Camundongos , Di-Hidro-Orotato Desidrogenase , Melanoma/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Mitocôndrias
5.
J Med Virol ; 96(1): e29372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235544

RESUMO

Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 µM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.


Assuntos
Compostos de Bifenilo , Ácidos Dicarboxílicos , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Animais , Di-Hidro-Orotato Desidrogenase , Antivirais/farmacologia , Antivirais/metabolismo , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Vírus da Influenza B , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Pirimidinas/farmacologia , Replicação Viral , Mamíferos/metabolismo
6.
J Chem Inf Model ; 64(2): 435-448, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38175956

RESUMO

We used a structure-based drug discovery approach to identify novel inhibitors of human dihydroorotate dehydrogenase (DHODH), which is a therapeutic target for treating cancer and autoimmune and inflammatory diseases. In the case of acute myeloid leukemia, no previously discovered DHODH inhibitors have yet succeeded in this clinical application. Thus, there remains a strong need for new inhibitors that could be used as alternatives to the current standard-of-care. Our goal was to identify novel inhibitors of DHODH. We implemented prefiltering steps to omit PAINS and Lipinski violators at the earliest stages of this project. This enriched compounds in the data set that had a higher potential of favorable oral druggability. Guided by Glide SP docking scores, we found 20 structurally unique compounds from the ChemBridge EXPRESS-pick library that inhibited DHODH with IC50, DHODH values between 91 nM and 2.7 µM. Ten of these compounds reduced MOLM-13 cell viability with IC50, MOLM-13 values between 2.3 and 50.6 µM. Compound 16 (IC50, DHODH = 91 nM) inhibited DHODH more potently than the known DHODH inhibitor, teriflunomide (IC50, DHODH = 130 nM), during biochemical characterizations and presented a promising scaffold for future hit-to-lead optimization efforts. Compound 17 (IC50, MOLM-13 = 2.3 µM) was most successful at reducing survival in MOLM-13 cell lines compared with our other hits. The discovered compounds represent excellent starting points for the development and optimization of novel DHODH inhibitors.


Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo
7.
J Neuroinflammation ; 21(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243316

RESUMO

BACKGROUND: Sympathoexcitation contributes to myocardial remodeling in heart failure (HF). Increased circulating pro-inflammatory mediators directly act on the Subfornical organ (SFO), the cardiovascular autonomic center, to increase sympathetic outflow. Circulating mitochondria (C-Mito) are the novel discovered mediators for inter-organ communication. Cyclic GMP-AMP synthase (cGAS) is the pro-inflammatory sensor of damaged mitochondria. OBJECTIVES: This study aimed to assess the sympathoexcitation effect of C-Mito in HF mice via promoting endothelial cGAS-derived neuroinflammation in the SFO. METHODS: C-Mito were isolated from HF mice established by isoprenaline (0.0125 mg/kg) infusion via osmotic mini-pumps for 2 weeks. Structural and functional analyses of C-Mito were conducted. Pre-stained C-Mito were intravenously injected every day for 2 weeks. Specific cGAS knockdown (cGAS KD) in the SFO endothelial cells (ECs) was achieved via the administration of AAV9-TIE-shRNA (cGAS) into the SFO. The activation of cGAS in the SFO ECs was assessed. The expression of the mitochondrial redox regulator Dihydroorotate dehydrogenase (DHODH) and its interaction with cGAS were also explored. Neuroinflammation and neuronal activation in the SFO were evaluated. Sympathetic activity, myocardial remodeling, and cardiac systolic dysfunction were measured. RESULTS: C-Mito were successfully isolated, which showed typical structural characteristics of mitochondria with double-membrane and inner crista. Further analysis showed impaired respiratory complexes activities of C-Mito from HF mice (C-MitoHF) accompanied by oxidative damage. C-Mito entered ECs, instead of glial cells and neurons in the SFO of HF mice. C-MitoHF increased the level of ROS and cytosolic free double-strand DNA (dsDNA), and activated cGAS in cultured brain endothelial cells. Furthermore, C-MitoHF highly expressed DHODH, which interacted with cGAS to facilitate endothelial cGAS activation. C-MitoHF aggravated endothelial inflammation, microglial/astroglial activation, and neuronal sensitization in the SFO of HF mice, which could be ameliorated by cGAS KD in the ECs of the SFO. Further analysis showed C-MitoHF failed to exacerbate sympathoexcitation and myocardial sympathetic hyperinnervation in cGAS KD HF mice. C-MitoHF promoted myocardial fibrosis and hypertrophy, and cardiac systolic dysfunction in HF mice, which could be ameliorated by cGAS KD. CONCLUSION: Collectively, we demonstrated that damaged C-MitoHF highly expressed DHODH, which promoted endothelial cGAS activation in the SFO, hence aggravating the sympathoexcitation and myocardial injury in HF mice, suggesting that C-Mito might be the novel therapeutic target for sympathoexcitation in HF.


Assuntos
Insuficiência Cardíaca , Órgão Subfornical , Camundongos , Animais , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Di-Hidro-Orotato Desidrogenase , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo
8.
Med Oncol ; 41(2): 46, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175425

RESUMO

Ferroptosis has been demonstrated to suppress cancer development and is targeted for cancer therapy. Genipin, an iridoid constituent in Gardeniae Fructus, has been reported to exert anti-cancer abilities. However, whether genipin could induce ferroptosis remains unclear. The purpose of this study is to explore the anti-gastric cancer (GC) effects of genipin by inducing ferroptosis and to identify the potential targets. CCK-8 and colony formation assays were performed to evaluate the anti-GC effects of genipin. Flowcytometry and western blot were used to indicate ferroptosis-inducing ability of genipin. The potential targets of genipin were analyzed by network pharmacology, screened using UALCAN and KM-plotter database and evaluated by molecular docking. The results showed that genipin inhibited cell viability and proliferation of GC cells. Genipin treatment decreased levels of GPX4 and SLC7A11, induced accumulation of lipid peroxidation intracellularly and led to ferroptosis in GC cells. Network pharmacology analysis identified that lipid- and ROS-related pathways involved in ferroptosis ranked high among genipin-GC common targets. Data from UALCAN and KM-plotter database demonstrated that expression levels of ferroptosis-related targets, including AURKA, BCAT2, DHODH, and GPI, increased in GC tissues and the higher levels of the above four targets were related to tumor stage, tumor grade, and poor prognosis. Among these four targets, AURKA, BCAT2, and DHODH were confirmed by molecular docking with binding energies less than - 5. Taken together, our study demonstrates that genipin could exert anti-GC ability by inducing ferroptosis and provides evidence for the potential application of genipin in GC treatment.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Di-Hidro-Orotato Desidrogenase , Aurora Quinase A , Simulação de Acoplamento Molecular , Farmacologia em Rede , Iridoides/farmacologia , Biologia Computacional , Proliferação de Células
9.
Recent Pat Anticancer Drug Discov ; 19(3): 280-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37070439

RESUMO

Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Patentes como Assunto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico
10.
Free Radic Biol Med ; 210: 416-429, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042225

RESUMO

BACKGROUND: Menaquinone-4(MK-4), the isoform of vitamin K2 in the brain, exerts neuroprotective effects against a variety of central nervous system disorders. This study aimed to demonstrate the anti-ferroptosis effects of MK-4 in neurons after SAH. METHODS: A subarachnoid hemorrhage (SAH) model was prepared by endovascular perforation in mice. In vitro hemoglobin stimulation of primary cortical neurons mimicked SAH. MK-4, Brequinar (BQR, DHODH inhibitor), and Selisistat (SEL, SIRT1 inhibitor) were administered, respectively. Subsequently, WB, immunofluorescence was used to determine protein expression and localization, and transmission electron microscopy was used to observe neuronal mitochondrial structure while other indicators of ferroptosis were measured. RESULTS: MK-4 treatment significantly upregulated the protein levels of DHODH; decreased GSH, PTGS2, NOX1, ROS, and restored mitochondrial membrane potential. Meanwhile, MK-4 upregulated the expression of SIRT1 and promoted its entry into the nucleus. BQR or SEL partially abolished the protective effect of MK-4 on, neurologic function, and ferroptosis. CONCLUSIONS: Taken together, our results suggest that MK-4 attenuates ferroptosis after SAH by upregulating DHODH through the activation of SIRT1.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Di-Hidro-Orotato Desidrogenase , Vitamina K 2/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Lesões Encefálicas/metabolismo
11.
Toxicol In Vitro ; 95: 105740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38036072

RESUMO

During the drug development process, organ toxicity leads to an estimated failure of one-third of novel chemical entities. Drug-induced toxicity is increasingly associated with mitochondrial dysfunction, but identifying the underlying molecular mechanisms remains a challenge. Computational modeling techniques have proven to be a good tool in searching for drug off-targets. Here, we aimed to identify mitochondrial off-targets of the nephrotoxic drugs tenofovir and gentamicin using different in silico approaches (KRIPO, ProBis and PDID). Dihydroorotate dehydrogenase (DHODH) and pyruvate dehydrogenase (PDH) were predicted as potential novel off-target sites for tenofovir and gentamicin, respectively. The predicted targets were evaluated in vitro, using (colorimetric) enzymatic activity measurements. Tenofovir did not inhibit DHODH activity, while gentamicin potently reduced PDH activity. In conclusion, the use of in silico methods appeared a valuable approach in predicting PDH as a mitochondrial off-target of gentamicin. Further research is required to investigate the contribution of PDH inhibition to overall renal toxicity of gentamicin.


Assuntos
Di-Hidro-Orotato Desidrogenase , Gentamicinas , Gentamicinas/toxicidade , Mitocôndrias , Piruvatos , Tenofovir/toxicidade
12.
Chem Biol Drug Des ; 103(1): e14388, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926553

RESUMO

Human dihydroorotate dehydrogenase (hDHODH) is a key enzyme that catalyzes the de novo synthesis of pyrimidine. In recent years, various studies have shown that inhibiting this enzyme can treat autoimmune diseases such as rheumatoid arthritis (RA) and cancer. This study designed and synthesized a series of novel thiazolidone hDHODH inhibitors. Through biological activity evaluation, Compound 14 was found to have high inhibitory activity, with an IC50 value reaching nanomolar level. Preliminary structure-activity relationship studies found that the carboxyl group in R1 and the naphthalene in R2 are key factors in improving activity. Through molecular docking, the binding mode between inhibitors and proteins was elucidated. This study provides an important reference for further optimizing hDHODH inhibitors.


Assuntos
Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores Enzimáticos/química
13.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119639, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37996061

RESUMO

Redox realignment is integral to the initiation, progression, and metastasis of cancer. This requires considerable metabolic rewiring to induce aberrant shifts in redox homeostasis that favor high hydrogen peroxide (H2O2) generation for the induction of a hyper-proliferative state. The ability of tumor cells to thrive under the oxidative burden imposed by this high H2O2 is achieved by increasing antioxidant defenses. This shift in the redox stress signaling threshold (RST) also dampens ferroptosis, an iron (Fe)-dependent form of cell death activated by oxidative distress and lipid peroxidation reactions. Mitochondria are central to the malignant transformation of normal cells to cancerous ones since these organelles supply building blocks for anabolism, govern ferroptosis, and serve as the major source of cell H2O2. This review summarizes advances in understanding the rewiring of redox reactions in mitochondria to promote carcinogenesis, focusing on how cancer cells hijack the electron transport chain (ETC) to promote proliferation and evasion of ferroptosis. I then apply emerging concepts in redox homeodynamics to discuss how the rewiring of the Krebs cycle and ETC promotes shifts in the RST to favor high rates of H2O2 generation for cell signaling. This discussion then focuses on proline dehydrogenase (PRODH) and dihydroorotate dehydrogenase (DHODH), two enzymes over expressed in cancers, and how their link to one another through the coenzyme Q10 (CoQ) pool generates a redox connection that forms a H2O2 signaling platform and pyrimidine synthesome that favors a hyper-proliferative state and disables ferroptosis.


Assuntos
Ferroptose , Neoplasias , Humanos , Di-Hidro-Orotato Desidrogenase , Prolina/metabolismo , Peróxido de Hidrogênio , Oxirredução , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
14.
Biomaterials ; 305: 122447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154441

RESUMO

Ferroptosis is a promising therapeutic approach for combating malignant cancers, but its effectiveness is limited in clinical due to the adaptability and self-repair abilities of cancer cells. Mitochondria, as the pivotal player in ferroptosis, exhibit tremendous therapeutic potential by targeting the intramitochondrial anti-ferroptotic pathway mediated by dihydroorotate dehydrogenase (DHODH). In this study, an albumin-based nanomedicine was developed to induce augmented ferroptosis in triple-negative breast cancer (TNBC) by depleting glutathione (GSH) and inhibiting DHODH activity. The nanomedicine (ATO/SRF@BSA) was developed by loading sorafenib (SRF) and atovaquone (ATO) into bovine serum albumin (BSA). SRF is an FDA-approved ferroptosis inducer and ATO is the only drug used in clinical that targets mitochondria. By combining the effects of SRF and ATO, ATO/SRF@BSA promoted the accumulation of lipid peroxides within mitochondria by inhibiting the glutathione peroxidase 4 (GPX4)-GSH pathway and downregulating the DHODH-coenzyme Q (CoQH2) defense mechanism, triggers a burst of lipid peroxides. Simultaneously, ATO/SRF@BSA suppressed cancer cell self-repair and enhanced cell death by inhibiting the synthesis of adenosine triphosphate (ATP) and pyrimidine nucleotides. Furthermore, the anti-cancer results showed that ATO/SRF@BSA exhibited tumor-specific killing efficacy, significantly improved the tumor hypoxic microenvironment, and lessened the toxic side effects of SRF. This work presents an efficient and easily achievable strategy for TNBC treatment, which may hold promise for clinical applications.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Di-Hidro-Orotato Desidrogenase , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Peróxidos Lipídicos , Soroalbumina Bovina , Atovaquona , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Vet Res ; 54(1): 124, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124181

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) infection has caused huge economic losses in global swine industry over the last 37 years. PRRSV commercial vaccines are not effective against all epidemic PRRSV strains. In this study we performed a high-throughput screening (HTS) of an FDA-approved drug library, which contained 2339 compounds, and found vidofludimus (Vi) could significantly inhibits PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages (PAMs). Compounds target prediction, molecular docking analysis, and target protein interference assay showed that Vi interacts with dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in the de novo pyrimidine synthesis pathway. Furthermore, PRRSV infection was restored in the presence of excess uridine and cytidine which promote pyrimidine salvage, or excess orotate which is the product of DHODH in the de novo pyrimidine biosynthesis pathway, thus confirming that the antiviral effect of Vi against PRRSV relies on the inhibition of DHODH. In addition, Vi also has antiviral activity against Seneca virus A (SVA), encephalomyocarditis virus (EMCV), porcine epidemic diarrhea virus (PEDV), and pseudorabies virus (PRV) in vitro. These findings should be helpful for developing a novel prophylactic and therapeutic strategy against PRRSV and other swine viral infections.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Di-Hidro-Orotato Desidrogenase , Simulação de Acoplamento Molecular , Linhagem Celular , Replicação Viral/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Pirimidinas/farmacologia
17.
Expert Opin Ther Pat ; 33(9): 579-596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942637

RESUMO

INTRODUCTION: Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED: This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION: PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Patentes como Assunto , Pirimidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Nucleotídeos de Pirimidina/farmacologia
18.
Proc Natl Acad Sci U S A ; 120(48): e2313197120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988466

RESUMO

A lead aryl pyrrolidinone anilide identified using high-throughput in vivo screening was optimized for efficacy, crop safety, and weed spectrum, resulting in tetflupyrolimet. Known modes of action were ruled out through in vitro enzyme and in vivo plant-based assays. Genomic sequencing of aryl pyrrolidinone anilide-resistant Arabidopsis thaliana progeny combined with nutrient reversal experiments and metabolomic analyses confirmed that the molecular target of the chemistry was dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway. In vitro enzymatic and biophysical assays and a cocrystal structure with purified recombinant plant DHODH further confirmed this enzyme as the target site of this class of chemistry. Like known inhibitors of other DHODH orthologs, these molecules occupy the membrane-adjacent binding site of the electron acceptor ubiquinone. Identification of a new herbicidal chemical scaffold paired with a novel mode of action, the first such finding in over three decades, represents an important leap in combatting weed resistance and feeding a growing worldwide population.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Herbicidas/farmacologia , Pirimidinas/farmacologia , Anilidas , Pirrolidinonas , Inibidores Enzimáticos/farmacologia
19.
J Med Chem ; 66(21): 14755-14786, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37870434

RESUMO

As a key rate-limiting enzyme in the de novo synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (hDHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1H-pyrazolo[3,4-b]pyridine scaffold was identified as an hDHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (w2), which was found to be the most promising and drug-like compound with potent inhibitory activity against hDHODH (IC50 = 173.4 nM). Compound w2 demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, w2 exerted better therapeutic effects on ulcerative colitis than hDHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, w2 is a promising hDHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.


Assuntos
Colite Ulcerativa , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Estrutura Molecular , Colite Ulcerativa/tratamento farmacológico , Desenho de Fármacos , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia
20.
J Phys Chem B ; 127(44): 9461-9475, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37897437

RESUMO

Malaria is a parasitic disease that, in its most severe form, can even lead to death. Insect-resistant vectors, insufficiently effective vaccines, and drugs that cannot stop parasitic infestations are making the fight against the disease increasingly difficult. It is known that the enzyme dihydroorotate dehydrogenase (DHODH) is of paramount importance for the synthesis of pyrimidine from the Plasmodium precursor, that is, for its growth and reproduction. Therefore, its blockade can lead to disruption of the parasite's life cycle in the vertebrate host. In this scenario, PfDHODH inhibitors have been considered candidates for a new therapy to stop the parasitic energy source. Given what is known, in this work, we applied molecular fractionation with conjugated caps (MFCC) in the framework of the quantum formalism of density functional theory (DFT) to evaluate the energies of the interactions between the enzyme and the different triazolopyrimidines (DSM483, DMS557, and DSM1), including a complex carrying the mutation C276F. From these results, it was possible to identify the main features of each system, focusing on the wild-type and mutant PfDHODH and examining the major amino acid residues that are part of the four complexes. Our analysis provides new information that can be used to develop new drugs that could prove to be more effective alternatives to present antimalarial drugs.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Plasmodium falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...